Serveur d'exploration sur l'Indium

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Growth of metamorphic InGaP layers on GaAs substrates

Identifieur interne : 000242 ( Chine/Analysis ); précédent : 000241; suivant : 000243

Growth of metamorphic InGaP layers on GaAs substrates

Auteurs : RBID : Pascal:13-0288246

Descripteurs français

English descriptors

Abstract

We report on the growth of InGaP metamorphic layer by gas source molecular-beam epitaxy. After optimization of the growth temperatures of the compositionally graded InGaP layer and the indium content in the top metamorphic InGaP layer, almost fully relaxed metamorphic layer was obtained with surface roughness of only about 2.17 nm. Strong photoluminescence signals were measured from both InGaAs quantum well and InAs quantum dots embedded in the metamorphic layer, indicating that the top metamorphic layer had low density of threading dislocations.

Links toward previous steps (curation, corpus...)


Links to Exploration step

Pascal:13-0288246

Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en" level="a">Growth of metamorphic InGaP layers on GaAs substrates</title>
<author>
<name sortKey="Yan, J Y" uniqKey="Yan J">J. Y. Yan</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Gong, Q" uniqKey="Gong Q">Q. Gong</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yue, L" uniqKey="Yue L">L. Yue</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Liu, Q B" uniqKey="Liu Q">Q. B. Liu</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cheng, R H" uniqKey="Cheng R">R. H. Cheng</name>
<affiliation wicri:level="1">
<inist:fA14 i1="03">
<s1>College of Physics and Engineering, Qufu Normal University</s1>
<s2>Qufu 273165</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Qufu 273165</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Cao, C F" uniqKey="Cao C">C. F. Cao</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, Y" uniqKey="Wang Y">Y. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wang, S M" uniqKey="Wang S">S. M. Wang</name>
<affiliation wicri:level="1">
<inist:fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>République populaire de Chine</country>
<wicri:noRegion>Shanghai 200050</wicri:noRegion>
</affiliation>
<affiliation wicri:level="1">
<inist:fA14 i1="02">
<s1>Department of Microtechnology, Chalmers University of Technology</s1>
<s2>41296 Göteberg</s2>
<s3>SWE</s3>
<sZ>8 aut.</sZ>
</inist:fA14>
<country>Suède</country>
<wicri:noRegion>41296 Göteberg</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="inist">13-0288246</idno>
<date when="2013">2013</date>
<idno type="stanalyst">PASCAL 13-0288246 INIST</idno>
<idno type="RBID">Pascal:13-0288246</idno>
<idno type="wicri:Area/Main/Corpus">000835</idno>
<idno type="wicri:Area/Main/Repository">000C26</idno>
<idno type="wicri:Area/Chine/Extraction">000242</idno>
</publicationStmt>
<seriesStmt>
<idno type="ISSN">0022-0248</idno>
<title level="j" type="abbreviated">J. cryst. growth</title>
<title level="j" type="main">Journal of crystal growth</title>
</seriesStmt>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>GSMBE method</term>
<term>Gallium arsenides</term>
<term>Growth mechanism</term>
<term>III-V compound</term>
<term>III-V semiconductors</term>
<term>Indium</term>
<term>Indium arsenides</term>
<term>Molecular beam epitaxy</term>
<term>Nanostructured materials</term>
<term>Optimization</term>
<term>Phosphides</term>
<term>Photoluminescence</term>
<term>Quantum dots</term>
<term>Quantum wells</term>
<term>Roughness</term>
<term>Stress effects</term>
<term>Threading dislocation</term>
</keywords>
<keywords scheme="Pascal" xml:lang="fr">
<term>Mécanisme croissance</term>
<term>Méthode GSMBE</term>
<term>Epitaxie jet moléculaire</term>
<term>Optimisation</term>
<term>Indium</term>
<term>Rugosité</term>
<term>Photoluminescence</term>
<term>Puits quantique</term>
<term>Nanomatériau</term>
<term>Semiconducteur III-V</term>
<term>Composé III-V</term>
<term>Point quantique</term>
<term>Dislocation filetée</term>
<term>Effet contrainte</term>
<term>Arséniure d'indium</term>
<term>Arséniure de gallium</term>
<term>Phosphure</term>
<term>InGaP</term>
<term>Substrat GaAs</term>
<term>In</term>
<term>InGaAs</term>
<term>InAs</term>
<term>8110A</term>
<term>8115H</term>
<term>7855</term>
<term>8107</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">We report on the growth of InGaP metamorphic layer by gas source molecular-beam epitaxy. After optimization of the growth temperatures of the compositionally graded InGaP layer and the indium content in the top metamorphic InGaP layer, almost fully relaxed metamorphic layer was obtained with surface roughness of only about 2.17 nm. Strong photoluminescence signals were measured from both InGaAs quantum well and InAs quantum dots embedded in the metamorphic layer, indicating that the top metamorphic layer had low density of threading dislocations.</div>
</front>
</TEI>
<inist>
<standard h6="B">
<pA>
<fA01 i1="01" i2="1">
<s0>0022-0248</s0>
</fA01>
<fA02 i1="01">
<s0>JCRGAE</s0>
</fA02>
<fA03 i2="1">
<s0>J. cryst. growth</s0>
</fA03>
<fA05>
<s2>378</s2>
</fA05>
<fA08 i1="01" i2="1" l="ENG">
<s1>Growth of metamorphic InGaP layers on GaAs substrates</s1>
</fA08>
<fA09 i1="01" i2="1" l="ENG">
<s1>The 17th International Conference on Molecular Beam Epitaxy</s1>
</fA09>
<fA11 i1="01" i2="1">
<s1>YAN (J. Y.)</s1>
</fA11>
<fA11 i1="02" i2="1">
<s1>GONG (Q.)</s1>
</fA11>
<fA11 i1="03" i2="1">
<s1>YUE (L.)</s1>
</fA11>
<fA11 i1="04" i2="1">
<s1>LIU (Q. B.)</s1>
</fA11>
<fA11 i1="05" i2="1">
<s1>CHENG (R. H.)</s1>
</fA11>
<fA11 i1="06" i2="1">
<s1>CAO (C. F.)</s1>
</fA11>
<fA11 i1="07" i2="1">
<s1>WANG (Y.)</s1>
</fA11>
<fA11 i1="08" i2="1">
<s1>WANG (S. M.)</s1>
</fA11>
<fA12 i1="01" i2="1">
<s1>AKIMOTO (Katzuhiro)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="02" i2="1">
<s1>SUEMASU (Takashi)</s1>
<s9>ed.</s9>
</fA12>
<fA12 i1="03" i2="1">
<s1>OKUMURA (Hajime)</s1>
<s9>ed.</s9>
</fA12>
<fA14 i1="01">
<s1>State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, 865 Changning Road</s1>
<s2>Shanghai 200050</s2>
<s3>CHN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
<sZ>3 aut.</sZ>
<sZ>4 aut.</sZ>
<sZ>6 aut.</sZ>
<sZ>7 aut.</sZ>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="02">
<s1>Department of Microtechnology, Chalmers University of Technology</s1>
<s2>41296 Göteberg</s2>
<s3>SWE</s3>
<sZ>8 aut.</sZ>
</fA14>
<fA14 i1="03">
<s1>College of Physics and Engineering, Qufu Normal University</s1>
<s2>Qufu 273165</s2>
<s3>CHN</s3>
<sZ>5 aut.</sZ>
</fA14>
<fA15 i1="01">
<s1>University of Tsukuba</s1>
<s3>JPN</s3>
<sZ>1 aut.</sZ>
<sZ>2 aut.</sZ>
</fA15>
<fA20>
<s1>141-144</s1>
</fA20>
<fA21>
<s1>2013</s1>
</fA21>
<fA23 i1="01">
<s0>ENG</s0>
</fA23>
<fA43 i1="01">
<s1>INIST</s1>
<s2>13507</s2>
<s5>354000506550350360</s5>
</fA43>
<fA44>
<s0>0000</s0>
<s1>© 2013 INIST-CNRS. All rights reserved.</s1>
</fA44>
<fA45>
<s0>14 ref.</s0>
</fA45>
<fA47 i1="01" i2="1">
<s0>13-0288246</s0>
</fA47>
<fA60>
<s1>P</s1>
<s2>C</s2>
</fA60>
<fA61>
<s0>A</s0>
</fA61>
<fA64 i1="01" i2="1">
<s0>Journal of crystal growth</s0>
</fA64>
<fA66 i1="01">
<s0>NLD</s0>
</fA66>
<fC01 i1="01" l="ENG">
<s0>We report on the growth of InGaP metamorphic layer by gas source molecular-beam epitaxy. After optimization of the growth temperatures of the compositionally graded InGaP layer and the indium content in the top metamorphic InGaP layer, almost fully relaxed metamorphic layer was obtained with surface roughness of only about 2.17 nm. Strong photoluminescence signals were measured from both InGaAs quantum well and InAs quantum dots embedded in the metamorphic layer, indicating that the top metamorphic layer had low density of threading dislocations.</s0>
</fC01>
<fC02 i1="01" i2="3">
<s0>001B80A10A</s0>
</fC02>
<fC02 i1="02" i2="3">
<s0>001B80A15H</s0>
</fC02>
<fC02 i1="03" i2="3">
<s0>001B70H55</s0>
</fC02>
<fC02 i1="04" i2="3">
<s0>001B80A07Z</s0>
</fC02>
<fC03 i1="01" i2="X" l="FRE">
<s0>Mécanisme croissance</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="ENG">
<s0>Growth mechanism</s0>
<s5>01</s5>
</fC03>
<fC03 i1="01" i2="X" l="SPA">
<s0>Mecanismo crecimiento</s0>
<s5>01</s5>
</fC03>
<fC03 i1="02" i2="X" l="FRE">
<s0>Méthode GSMBE</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="ENG">
<s0>GSMBE method</s0>
<s5>02</s5>
</fC03>
<fC03 i1="02" i2="X" l="SPA">
<s0>Método GSMBE</s0>
<s5>02</s5>
</fC03>
<fC03 i1="03" i2="3" l="FRE">
<s0>Epitaxie jet moléculaire</s0>
<s5>03</s5>
</fC03>
<fC03 i1="03" i2="3" l="ENG">
<s0>Molecular beam epitaxy</s0>
<s5>03</s5>
</fC03>
<fC03 i1="04" i2="3" l="FRE">
<s0>Optimisation</s0>
<s5>04</s5>
</fC03>
<fC03 i1="04" i2="3" l="ENG">
<s0>Optimization</s0>
<s5>04</s5>
</fC03>
<fC03 i1="05" i2="3" l="FRE">
<s0>Indium</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="05" i2="3" l="ENG">
<s0>Indium</s0>
<s2>NC</s2>
<s5>05</s5>
</fC03>
<fC03 i1="06" i2="3" l="FRE">
<s0>Rugosité</s0>
<s5>06</s5>
</fC03>
<fC03 i1="06" i2="3" l="ENG">
<s0>Roughness</s0>
<s5>06</s5>
</fC03>
<fC03 i1="07" i2="3" l="FRE">
<s0>Photoluminescence</s0>
<s5>07</s5>
</fC03>
<fC03 i1="07" i2="3" l="ENG">
<s0>Photoluminescence</s0>
<s5>07</s5>
</fC03>
<fC03 i1="08" i2="3" l="FRE">
<s0>Puits quantique</s0>
<s5>08</s5>
</fC03>
<fC03 i1="08" i2="3" l="ENG">
<s0>Quantum wells</s0>
<s5>08</s5>
</fC03>
<fC03 i1="09" i2="3" l="FRE">
<s0>Nanomatériau</s0>
<s5>09</s5>
</fC03>
<fC03 i1="09" i2="3" l="ENG">
<s0>Nanostructured materials</s0>
<s5>09</s5>
</fC03>
<fC03 i1="10" i2="3" l="FRE">
<s0>Semiconducteur III-V</s0>
<s5>10</s5>
</fC03>
<fC03 i1="10" i2="3" l="ENG">
<s0>III-V semiconductors</s0>
<s5>10</s5>
</fC03>
<fC03 i1="11" i2="X" l="FRE">
<s0>Composé III-V</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="ENG">
<s0>III-V compound</s0>
<s5>11</s5>
</fC03>
<fC03 i1="11" i2="X" l="SPA">
<s0>Compuesto III-V</s0>
<s5>11</s5>
</fC03>
<fC03 i1="12" i2="3" l="FRE">
<s0>Point quantique</s0>
<s5>12</s5>
</fC03>
<fC03 i1="12" i2="3" l="ENG">
<s0>Quantum dots</s0>
<s5>12</s5>
</fC03>
<fC03 i1="13" i2="X" l="FRE">
<s0>Dislocation filetée</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="ENG">
<s0>Threading dislocation</s0>
<s5>13</s5>
</fC03>
<fC03 i1="13" i2="X" l="SPA">
<s0>Dislocación aterrajada</s0>
<s5>13</s5>
</fC03>
<fC03 i1="14" i2="3" l="FRE">
<s0>Effet contrainte</s0>
<s5>14</s5>
</fC03>
<fC03 i1="14" i2="3" l="ENG">
<s0>Stress effects</s0>
<s5>14</s5>
</fC03>
<fC03 i1="15" i2="3" l="FRE">
<s0>Arséniure d'indium</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="15" i2="3" l="ENG">
<s0>Indium arsenides</s0>
<s2>NK</s2>
<s5>15</s5>
</fC03>
<fC03 i1="16" i2="3" l="FRE">
<s0>Arséniure de gallium</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="16" i2="3" l="ENG">
<s0>Gallium arsenides</s0>
<s2>NK</s2>
<s5>16</s5>
</fC03>
<fC03 i1="17" i2="3" l="FRE">
<s0>Phosphure</s0>
<s2>NA</s2>
<s5>29</s5>
</fC03>
<fC03 i1="17" i2="3" l="ENG">
<s0>Phosphides</s0>
<s2>NA</s2>
<s5>29</s5>
</fC03>
<fC03 i1="18" i2="3" l="FRE">
<s0>InGaP</s0>
<s4>INC</s4>
<s5>46</s5>
</fC03>
<fC03 i1="19" i2="3" l="FRE">
<s0>Substrat GaAs</s0>
<s4>INC</s4>
<s5>47</s5>
</fC03>
<fC03 i1="20" i2="3" l="FRE">
<s0>In</s0>
<s4>INC</s4>
<s5>48</s5>
</fC03>
<fC03 i1="21" i2="3" l="FRE">
<s0>InGaAs</s0>
<s4>INC</s4>
<s5>49</s5>
</fC03>
<fC03 i1="22" i2="3" l="FRE">
<s0>InAs</s0>
<s4>INC</s4>
<s5>50</s5>
</fC03>
<fC03 i1="23" i2="3" l="FRE">
<s0>8110A</s0>
<s4>INC</s4>
<s5>71</s5>
</fC03>
<fC03 i1="24" i2="3" l="FRE">
<s0>8115H</s0>
<s4>INC</s4>
<s5>72</s5>
</fC03>
<fC03 i1="25" i2="3" l="FRE">
<s0>7855</s0>
<s4>INC</s4>
<s5>73</s5>
</fC03>
<fC03 i1="26" i2="3" l="FRE">
<s0>8107</s0>
<s4>INC</s4>
<s5>74</s5>
</fC03>
<fN21>
<s1>273</s1>
</fN21>
<fN44 i1="01">
<s1>OTO</s1>
</fN44>
<fN82>
<s1>OTO</s1>
</fN82>
</pA>
<pR>
<fA30 i1="01" i2="1" l="ENG">
<s1>MBE2012 International Conference on Molecular Beam Epitaxy</s1>
<s2>17</s2>
<s3>Nara JPN</s3>
<s4>2012-09-23</s4>
</fA30>
</pR>
</standard>
</inist>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=IndiumV3/Data/Chine/Analysis
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000242 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Chine/Analysis/biblio.hfd -nk 000242 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=   *** parameter Area/wikiCode missing *** 
   |area=    IndiumV3
   |flux=    Chine
   |étape=   Analysis
   |type=    RBID
   |clé=     Pascal:13-0288246
   |texte=   Growth of metamorphic InGaP layers on GaAs substrates
}}

Wicri

This area was generated with Dilib version V0.5.77.
Data generation: Mon Jun 9 10:27:54 2014. Site generation: Thu Mar 7 16:19:59 2024